• <acronym id="0a2hv"><label id="0a2hv"></label></acronym>
  • <pre id="0a2hv"><ruby id="0a2hv"></ruby></pre>
    
    

      <tr id="0a2hv"></tr>
    1. <td id="0a2hv"><ruby id="0a2hv"></ruby></td>
      奧數網 奧數大連站 > 小學試題庫 > 四年級 > 數學 > 正文

      四年級奧數基礎第三十講 抽屜原理(二)

      來源:大連奧數網整理 2012-03-12 14:19:01

        四年級奧數基礎第三十講 抽屜原理(二)

        這一講我們講抽屜原理的另一種情況。先看一個例子:如果將13只鴿子放進6只鴿籠里,那么至少有一只籠子要放3只或更多的鴿子。道理很簡單。如果每只鴿籠里只放2只鴿子,6只鴿籠共放12只鴿子。剩下的一只鴿子無論放入哪只鴿籠里,總有一只鴿籠放了3只鴿子。這個例子所體現的數學思想,就是下面的抽屜原理2。

        抽屜原理2:將多于m×n件的物品任意放到n個抽屜中,那么至少有一個抽屜中的物品的件數不少于m+1。

        說明這一原理是不難的。假定這n個抽屜中,每一個抽屜內的物品都不到(m+1)件,即每個抽屜里的物品都不多于m件,這樣,n個抽屜中可放物品的總數就不會超過m×n件。這與多于m×n件物品的假設相矛盾。這說明一開始的假定不能成立。所以至少有一個抽屜中物品的件數不少于m+1。

        從最不利原則也可以說明抽屜原理2。為了使抽屜中的物品不少于(m+1)件,最不利的情況就是n個抽屜中每個都放入m件物品,共放入(m×n)件物品,此時再放入1件物品,無論放入哪個抽屜,都至少有一個抽屜不少于(m+1)件物品。這就說明了抽屜原理2。

        不難看出,當m=1時,抽屜原理2就轉化為抽屜原理1。即抽屜原理2是抽屜原理1的推廣。

        例1某幼兒班有40名小朋友,現有各種玩具122件,把這些玩具全部分給小朋友,是否會有小朋友得到4件或4件以上的玩具?

        分析與解:將40名小朋友看成40個抽屜。今有玩具122件,122=3×40+2。應用抽屜原理2,取n=40,m=3,立即知道:至少有一個抽屜中放有4件或4件以上的玩具。也就是說,至少會有一個小朋友得到4件或4件以上的玩具。

        例2一個布袋中有40塊相同的木塊,其中編上號碼1,2,3,4的各有10塊。問:一次至少要取出多少木塊,才能保證其中至少有3塊號碼相同的木塊?

        分析與解:將1,2,3,4四種號碼看成4個抽屜。要保證有一個抽屜中至少有3件物品,根據抽屜原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9塊木塊,才能保證其中有3塊號碼相同的木塊。

        例3六年級有100名學生,他們都訂閱甲、乙、丙三種雜志中的一種、二種或三種。問:至少有多少名學生訂閱的雜志種類相同?

        分析與解:首先應當弄清訂閱雜志的種類共有多少種不同的情況。

        訂一種雜志有:訂甲、訂乙、訂丙3種情況;

        訂二種雜志有:訂甲乙、訂乙丙、訂丙甲3種情況;

        訂三種雜志有:訂甲乙丙1種情況。

        總共有3+3+1=7(種)訂閱方法。我們將這7種訂法看成是7個“抽屜”,把100名學生看作100件物品。因為100=14×7+2。根據抽屜原理2,至少有14+1=15(人)所訂閱的報刊種類是相同的。

      相關閱讀:

      四年級奧數基礎第二十九講:抽屜原理(一)

      小學四年級奧數基礎精講(1~20)

      小學四年級奧數基礎精講(11~20)

      我要投稿
      亚洲老人精品黄色视频_五月天亚洲视频福利_天天躁久久躁中文字字幕_91精品亚洲欧美午夜福利