四年級奧數基礎第七講:找規律(一)
來源:大連奧數網整理 2012-02-02 17:19:22
四年級奧數基礎第七講:找規律(一)
我們在三年級已經見過“找規律”這個題目,學習了如何發現圖形、數表和數列的變化規律。這一講重點學習具有“周期性”變化規律的問題。什么是周期性變化規律呢?比如,一年有春夏秋冬四季,百花盛開的春季過后就是夏天,赤日炎炎的夏季過后就是秋天,果實累累的秋季過后就是冬天,白雪皚皚的冬季過后又到了春天。年復一年,總是按照春、夏、秋、冬四季變化,這就是周期性變化規律。再比如,數0,1,2,0,1,2,0,1,2,0,…是按照0,1,2三個數重復出現的,這也是周期性變化問題。
下面,我們通過一些例題作進一步講解。
例1 節日的夜景真漂亮,街上的彩燈按照5盞紅燈、再接4盞藍燈、再接3盞黃燈,然后又是5盞紅燈、4盞藍燈、3盞黃燈、……這樣排下去。問:
。1)第100盞燈是什么顏色?
。2)前150盞彩燈中有多少盞藍燈?
分析與解:這是一個周期變化問題。彩燈按照5紅、4藍、3黃,每12盞燈一個周期循環出現。
。1)100÷12=8……4,所以第100盞燈是第9個周期的第4盞燈,是紅燈。
。2)150÷12=12……6,前150盞燈共有12個周期零6盞燈,12個周期中有藍燈4×12=48(盞),最后的6盞燈中有1盞藍燈,所以共有藍燈48+1=49(盞)。
例2 有一串數,任何相鄰的四個數之和都等于25。已知第1個數是3,第6個數是6,第11個數是7。問:這串數中第24個數是幾?前77個數的和是多少?
分析與解:因為第1,2,3,4個數的和等于第2,3,4,5個數的和,所以第1個數與第5個數相同。進一步可推知,第1,5,9,13,…個數都相同。
同理,第2,6,10,14,…個數都相同,第3,7,11,15,…個數都相同,第4,8,12,16…個數都相同。
也就是說,這串數是按照每四個數為一個周期循環出現的。所以,第2個數等于第6個數,是6;第3個數等于第11個數,是7。前三個數依次是3,6,7,第四個數是
25-(3+6+7)=9。
這串數按照3,6,7,9的順序循環出現。第24個數與第4個數相同,是9。由77÷4=9……1知,前77個數是19個周期零1個數,其和為25×19+3=478。